МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «РОСТОВСКИЙ-НА-ДОНУ КОЛЛЕДЖ СВЯЗИ И ИНФОРМАТИКИ»

Методика расчета нагрузки и состава оборудования коммутационного узла на базе SI-3000

PACCMOTPEHO

на заседании Методического совета ГБПОУ РО «РКСИ» Протокол №4 от 11 января 2016 г.

СОГЛАСОВАНО: Зам. директора по УР ГБПОУ РО «РКСИ»

Е.Л.Новикова

Якубенко С.Я.

Методика расчета нагрузки и состава оборудования коммутационного узла на базе SI-300. – Ростов-на-Дону.: ГБПОУ РО «РКСИ», 2016, - 14 с.

Методика расчета нагрузки и состава оборудования коммутационного узла на базе SI-3000 применяется для разработки курсового проекта по МДК 03.01 ТЕХНОЛОГИЯ МОНТАЖА И ОБСЛУЖИВАНИЯ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ С КОММУТАЦИЕЙКАНАЛОВ» и предназначена для студентов колледжа, обучающихся по специальности 11.02.11 Сети связи и системы коммутации.

- © Якубенко С.Я.
- © ГБПОУ РО «РКСИ», 2016

Введение

Согласно Типовому положению об образовательном учреждении среднего профессионального образования, утвержденному постановлением Правительства Российской Федерации № 543 от 18 июля 2008 г., курсовой проект (КП) по междисциплинарному курсу (МДК) является одним из основных видов учебных занятий и формой контроля учебной работы студентов. Курсовое проектирование является формой самостоятельной работы студента и выполняется по индивидуальному заданию.

Выполнение студентом курсового проекта осуществляется как промежуточный контроль изучения МДК 03.01 ТЕХНОЛОГИЯ МОНТАЖА И ОБСЛУЖИВАНИЯ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ \mathbf{C} КОММУТАЦИЕЙКАНАЛОВ», в ходе которого проверяются профессиональные компетенции, связанные с деятельностью будущих специалистов. Курсовой проект дает возможность закрепить именно те теоретические знания и умения, которые понадобятся обучающимся в их будущей профессиональной деятельности. Проектирование как метод познания помогает студентам осознать, какую роль играют знания и умения, когда они перестают быть абстрактными и становятся практически полезными, необходимыми для овладения профессией.

Курсовой проект по мдк 03.01 «ТЕХНОЛОГИЯ МОНТАЖА И ОБСЛУЖИВАНИЯ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ С КОММУТАЦИЕЙ КАНАЛОВ» выполняется студентами специальности 11.02.11 «Сети связи и системы коммутации» в 6 семестре.

1 Цели и задачи курсового проектирования

Выполнение студентом курсовой проекта по МДК проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений по специальным дисциплинам;
 - углубления теоретических знаний в соответствии с заданной темой;
- формирования умений применять теоретические знания при решении поставленных вопросов;
- формирования умений использовать справочную, нормативную и правовую документацию;
- развития творческой инициативы, самостоятельности, ответственности и организованности;
- подготовки к государственной итоговой аттестации, к написанию выпускных квалификационных работ.

Задачей курсового проекта является разработка проекта цифровой системы коммутации на телефонной сети по заданным исходным данным, расчет основных параметров нагрузки ,групповых трактов и оборудования. Исходные данные и варианты заданий приведены в приложении 1.

При выполнении курсового проекта используются компетенции, полученные студентами при изучении дисциплин «Основы телекоммуникаций», «Основы оптоэлектроники», МДК «Технология монтажа и обслуживания телекоммуникационных систем с коммутацией каналов».

2 Организация и последовательность выполнения курсового проекта

Курсовое проектирование является формой самостоятельной работы студента и выполняется по индивидуальному заданию.

Задание на проект выдается преподавателем на учебном занятии согласно календарно-тематическому плану, защита проводится на предпоследнем и последнем занятии.

В ходе выполнения проекта студент консультируется с руководителем курсового проекта.

За правильность проектных решений, качество оформления проекта, своевременность выполнения отдельных этапов и представления к защите отвечает студент.

2.1 Задание на курсовое проектирование

Задание на курсовое проектирование выбирается студентом по номеру группы и порядковому номеру студента в журнале или же назначается преподавателем лично. Варианты заданий приведены в приложении 1.

2.2 Содержание и объем курсового проекта

Курсовой проект должен содержать:

- титульный лист;
- техническое задание;
- отзыв руководителя КП;
- пояснительную записку (ПЗ).

Объем пояснительной записки составляет 25 – 30 машинописных страниц формата A4. Пояснительная записка должна быть написана четко и кратко, содержать пояснения к графическому материалу, обоснование принятых решений.

Основная часть курсовой работы должна быть разделена на структурные элементы (главы); главы обычно представляются подразделами (параграфами). Содержания подразделов должны раскрывать тему курсовой работы и быть логически взаимосвязаны. Разделы (главы) и подразделы (параграфы) должны иметь заголовки, отражающие их содержание. При этом заголовки разделов (глав) не должны повторять название работы, а заголовки подразделов (параграфов) – название разделов (глав). Изложение каждой главы основной части завершается выводами. Как правило, основная часть работы образуется двумя-тремя главами ПО два-три параграфа. заключительной части (заключении) внимание акцентируется на ранее положениях курсовой работы, рассмотренных формулируются обобщения и выводы, констатируется решение поставленных ранее задач и достижение цели работы.

В ПЗ не следует включать материал, непосредственно не относящийся к сущности проекта. ПЗ должна включать следующие разделы:

- содержание;
- введение;
- основную часть ПЗ (реализация технического задания);
- заключение;
- список литературы;
- перечень условных обозначений и сокращений в алфавитном порядке в виде списка, в котором слева приводится сокращение, справа его расшифровка.

Основная часть ПЗ данного проекта включает: Введение.

Выбор и техническую характеристику оборудования Расчет нагрузки Расчет соединительных линий Расчет аппаратных средств Заключение

Подготовка к защите и защита проекта

Графическая часть выполняется в среде Microsoft Office Visio и должна содержать схему ЦСК.

2.3 Последовательность выполнения проекта

Проект разрабатывается в последовательности, соответствующей содержанию пояснительной записки (п.2.2).

Выбор ЦСК осуществляется на основе пропускной способности и согласуется с преподавателем.

Пояснительная записка и графический материал оформляются в соответствии с требованиями ЕСКД (Единая система конструкторской документации), принятыми в РКСИ.

Подготовленный и оформленный проект, прошедший экспертизу на выполнение требований ЕСКД, представляется преподавателю не позднее, чем за 2 дня до защиты.

- 3 Общие рекомендации к выполнению курсового проекта
- 3.1 Введение и теоретическая часть

В ведении необходимо обозначить:

- цель работы;
- актуальность темы.

Заострить внимание на задачах, решаемых сегодня, привести несколько конкретных примеров таких задач, остановиться на нерешённых проблемах. Указать современные методы построения транспортных сетей связи.

После написания введения и вникнув в суть полученного задания, необходимо рассчитать нагрузку, количество соединительных линий и аппаратных средств.

3.2 Расчет нагрузки и оборудования ЦСК

3.2.1 Расчет нагрузки

Исходные данные для расчета нагрузки приведены в таблице 1.

Таблица 2 – Структурное разделение абонентов по категориям

Категория	Количество абонентов	Среднее количество вызовов (C)	Среднее время занятия t (c)						
Общая емкость									
Деловой сектор	1800	2,8	83,7						
Квартирный сектор 120		1,8	96,52						
N adsl	800	3,4	121,54						
N IP-TV	400	4,2	287						

Для ведения расчета оборудования вначале необходимо рассчитать исходящую абонентскую нагрузку, которая складывается из величин нагрузки, создаваемой каждой категорией абонентов, т. е. отдельно рассчитывается нагрузка от абонентов делового сектора и от абонентов квартирного сектора.

Величина исходящей нагрузки определяется по формуле и измеряется в Эрлангах.

$$Y = \frac{N_i \cdot C_i \cdot t_i}{3600},\tag{1}$$

 $N_{\rm i}$ – количество абонентов каждой отдельно взятой категории,

 C_{i} – количество вызовов для отдельно взятой категории,

t_i - среднее время продолжительности разговора

Определяем общую нагрузку по формуле

где

Рассчитаем величину исходящей нагрузки для проектируемой ATC к узлу спецслужб по формуле

$$Y_{\text{yCC}} = 0.012 \cdot Y_{\text{obij}}. \tag{3}$$

8

Рассчитаем исходящую нагрузку, поступающую к АМТС по формуле

$$Y_{AMTC} = 0.057 \cdot Y_{oom}. \tag{4}$$

Величина общей исходящей нагрузки к внешним соединительным линиям рассчитывается по формуле

$$Y_{\text{общ.исх.}} = Y_{\text{общ}} + Y_{\text{yCC}} + Y_{\text{AMTC}}.$$
 (5)

3.2.2 Расчет соединительных линий

Определим количество внешних соединительных линий для заданной емкости по формуле

$$V_{CJI} = N_{emk} \cdot K_{K'} \tag{9}$$

V_{СЛ} – количество внешних соединительных линий,

где $N_{\text{емк.}}$ – емкость станции,

К_К – коэффициент концентрации.

Полученное количество соединительных линий представлено в аналоговой форме, для создания внешних исходящих и входящих направлений нам необходимо определить количество необходимых групповых трактов для организации исходящей и входящей связи. Количество групповых трактов определяется по формуле

$$L_{\text{внеш.гр.тр.}} = \frac{V_{\text{СЛ}}}{32},\tag{10}$$

 $L_{\text{внеш.гр.тр.}}$ – количество групповых трактов.

где

Количество групповых трактов к АМТС составляет 15% от общего числа соединительных линий. Рассчитаем количество групповых трактов к АМТС по формуле

$$L_{AMTC \text{ rp.rp.}} = \frac{L_{BHeIII.\text{rp.rp.}} \cdot \%_{AMTC}}{100}, \tag{11}$$

 $L_{AMTC \ rp.rp.}$ – количество групповых трактов к AMTC, $M_{AMTC} = M_{AMTC} = M_{AMTC}$ – процент групповых трактов к AMTC.

Количество групповых трактов к узлу спецсвязи составляет 2% от общего числа соединительных линий. Рассчитаем количество групповых трактов к узлу спецсвязи по формуле

$$L_{\text{УСС гр.тр.}} = \frac{L_{\text{внеш.гр.тр.}} \cdot \%_{\text{УСС гр.тр.}}}{100},$$

$$L_{\text{УСС гр.тр.}} - \text{количество групповых трактов к УСС,}$$

%усс гр.тр. – процент групповых трактов к УСС.

где

3.3 Расчет аппаратных средств

Конструктив MSAN со встроенным GB Ethernet коммутатором:

- абонентский блок (POTS);
- блок широкополосного доступа (xDSL);
- блок оптического подключения (fiber);
- шлюз TDM/IP (SM);
- шлюз доступа (Access);
- Call Server (CS);
- Integrated Call Server (iCS).

Для размещения плат я выбрал 20-позиционнную платформу МЕА с резервированием. Она позволяет разместить 18 периферийных плат и 2 центральные платы коммутатора. МЕА 20 состоит из трех механических частей: секция монтажных позиций – 400 мм, блок вентиляторов – 50 мм, разводка кабелей – 50 мм.

Аппаратные характеристики:

- потребление питания макс. 1600 Вт/модуль, 80 Вт/плату;
- резервный блок вентиляторов (опция) (секция модуля разделителей без вентиляторов);
- электромагнитная совместимость обеспечивается лицевыми панелями (панели и разъемы заземлены);
 - принудительное вертикальное охлаждение.

Количество блоков МАК определяем по формуле

$$N_{MAK} = \frac{N_{eMK.}}{1408},\tag{17}$$

где

N_{мак} – количество блоков МАК.

Количество кассет определяем по формуле

$$S_{\text{Kaccet AK}} = \frac{\frac{N_{a6.}}{64}}{18}.$$
 (18)

Съемная плата POTS образует интерфейс услуг для передачи речи с IPсетью. Эта плата осуществляет преобразование медиапотоков между сетями с коммутацией каналов коммутацией пакетов, И также реализует взаимодействие сигнализации между линиями телефонной сети общего пользования и сетевым интерфейсом MGCP или H.248. Эта плата предоставляет 64 порта стандартных аналоговых абонентских линий для домашних и корпоративных абонентов и поддерживает сопротивление по длине шлейфа 1800 Ом.

Характеристики платы POTS:

- программируемые характеристики AC и DC;
- программируемая внутренняя посылка вызова до 85 Brms;
- тарифный импульс до 2,5 Brms на 200 Ом (12/16 кГц);
- интегрированное тестирование абонентской линии;
- защита линии согласно К.20, К44;
- перемена полярности;
- A/D, D/A согласно ITU/Q552;
- обнаружение событий в абонентской линии;
- DSP;

де

- генерирование и обнаружение акустических сигналов;
- эхо-компенсация согласно G.165/168;
- голосовые кодеки G.711, G.723, G.729.

Количество плат TDM абонентов рассчитываем по формуле

$$N_{TDM} = \frac{N_{KB.TDM} + N_{ДЕЛ.TDM}}{64},\tag{19}$$

N_{TDM} – количество плат TDM абонентов,

 $N_{\mbox{\tiny KB,TDM}}$ – количество квартирных абонентов,

N_{пел.ТDM} – количество абонентов делового сектора.

Рассчитываем количество плат агрегации по формуле

$$S_{GE} = \frac{L_{\text{внеш.гр.тр.}}}{24}.$$
 (20)

Характеристики платы iCS:

- пакетный интерфейс 2 x GE;
- TDM-интерфейс 32 x E1;
- 4 дочерние платы (процессорная обработка, DSP);
- усовершенствованная технология DSP:
- эхо-компенсация согласно G.165/168;
- поддержка высококачественных голосовых кодеков G.711, G.723, G.729;
 - факс кодеки: G.711, Т.38;
 - 480 каналов VoIP;
 - качество обслуживания: IEEE 802.1 Q/p;
 - производительность: 30.000 вызовов в ЧНН;
 - число обслуживаемых абонентов, одновременно: 5.000 абонентов.
- программный коммутатор (CallServer –групповой коммутатор с процессорной обработкой функций сигнализации и коммутации);

- поддерживает коммутацию каналов TDM;
- медиа-шлюз, для согласования TDM и SIP-T;
- сигнализация TDM-доступа;
- V5.2, PRI (DSS1), QSIG, CAS многочастотная;
- сигнализация TDM-соединительных линий;
- SSN7, PRI (DSS1), CAS общеканальная;
- сигнализация соединительных линий пакетной передачи: SIP-T, H.323;
- сигнализация доступа с пакетной передачей: H.323, MGCP, SIP;
- усовершенствованные услуги;
- резервирование (IP и TDM).

Рассчитаем количество плат iCS по формуле

$$S_{\text{плат iCS}} = S_{\text{GE}} \cdot 2. \tag{21}$$

Характеристики платы SM:

- сетевой интерфейс 2 x GE;
- пользовательский интерфейс 16 x E1:
- TDM к IP, IP к TDM;
- сигнализация TDM:
- DSS1, QSIG, V5.2;
- SSN7:
- сетевые сигнализации ІР и управление:
- протокол управления межсетевыми медиа-шлюзами (MGCP);
- IUA/SCTP;
- M3UA/SCTP;
- усовершенствованная технология DSP:
- эхо-компенсация согласно G.165/168;
- поддержка высококачественных голосовых кодеков G.711, G.723, G.729;
 - факс кодеки: G.711, Т.38;
 - качество обслуживания: IEEE 802.1 Q/p.

Рассчитаем количество плат SM по формуле

$$N_{SM} = S_{GE} \cdot 2. \tag{22}$$

Характеристики оптоволоконной платы:

- 12- или 24-портовая оптоволоконная Ethernet плата:
- интерфейсы FastEthernet;
- 100baseFX (двойное оптоволокно);
- 100baseBX (одно оптоволокно);
- опция SMF или MMF;
- опция интерфейса SFP или SFF;
- IGMP snooping;
- RSTP, MSTP;
- Безопасность порта;

- Частный (Private) порт;
- DHCP передача (Relay) опция 82;
- 4 очереди для QoS распределения (802.1p),PQ, WRR;
- VLAN тегирование на базе порта, 802.1QVLAN;
- VLAN стекирование (stacking) (QinQ).

Рассчитаем количество плат ВОЛС для внешних групповых трактов по формуле

$$S_{\text{плат ВОЛС}} = \frac{N_{\text{портов ЦСЛ исх.}}}{24}.$$
 (23)

Рассчитаем количество плат ВОЛС к АМТС по формуле

$$S_{\text{плат ВОЛС АМТС}} = \frac{N_{\text{портов АМТС.}}}{12}.$$
 (24)

Рассчитаем количество плат ВОЛС для доступа к УСС по формуле

$$S_{\text{плат ВОЛС УСС}} = \frac{N_{\text{портов УСС}}}{12}.$$
 (25)

4 Подготовка к защите и защита проекта

Защита готового и проверенного преподавателем курсового проекта осуществляется на последнем и предпоследнем занятии модуля. Готовый, подписанный исполнителем проект должен быть сдан на проверку за 2 дня до даты защиты. Оценка проекта производится с учетом его качества и результатов защиты.

При защите студент должен сделать краткое сообщение о своей работе — какие цели ставились и каким способом они достигнуты. Должны быть рассмотрены не только технические, но и экономические факторы и сделаны краткие выводы.

Заключение

Рассмотренные в методических рекомендациях по выполнению курсового проектирования вопросы будут способствовать развитию у студентов умений и навыков в проектировании цифровых линий передачи на основе современных телекоммуникационных технологий.

СПИСОК ЛИТЕРАТУРЫ

- 1 Техническая документация станции SI-3000
- 2 Пузыревский И.А. Правила оформления текстовых документов в учебном процессе. 8-е изд. Ростов-на-Дону: РКСИ, 2012. 44c.
 - 3 <u>dvkuot.ru/index.php/refer/135-tb</u>
 - 4 tel-solutions.ru
 - 5 www.ktsys.ru/Iskratel/SI3000/
 - 6 comquest.ru/catalog/ngn/SI3000/
 - 7 <u>www.elekont.ru/catalog/kodeki/si3000-ks.html</u>
 - 8 www.SI3000.ru

ПРИЛОЖЕНИЕ 1 Задание на курсовое проектирование «Разработка проекта ЦСК на городской телефонной сети»

№	Ф.И.О.студента	Емко	Кол-во	Кол-во	Среднее	Среднее	Средняя
ва		сть	абонентов	абонентов	кол-во	кол-во	продолж
ри		проек	кв.сектор	дел.сектора	вызовов	вызовов	ительно
ан		тируе	a	%	дел.секто	кв.секто	СТЬ
та		мой	%		p	p	разговор
		ATC	70				a
1		9000	20	80	3.2	1.6	126
2		12000	15	85	2.9	1.85	146
3		15500	30	70	3.1	1.52	134
4		17200	17	83	2.9	1.22	143
5		13500	25	75	2.85	1.36	154
6		18500	42	58	3.15	1.45	118
7		14300	22	78	2.95	1.28	128
8		11400	24	76	3.3	1.4	129
9		10500	10	90	3.25	1.15	145
10		12800	25	75	3.35	1.38	146
11		14800	15	85	2.95	1.25	147
12		16200	18	82	2.79	1.32	148
13		10700	65	35	3.12	1.44	153
14		17500	28	72	3,4	1,7	145
15		12500	44	56	3.62	1.17	132
16		15200	51	49	3.28	1.22	138
17		12700	45	55	2.91	1.39	146
18		13000	20	80	2,7	1,25	125
19		14700	25	75	3.46	1.42	128
20		13600	35	65	2.85	1.34	154
21		16300	33	67	3.11	1.27	133
22		17700	28	72	3.44	1.77	145
23		15300	24	76	3.23	1.23	136
24		13350	42	58	3.22	1.38	148
25		11800	27	73	3.23	1.54	159